ICON integration and testing is underway at the Space Dynamics Lab in Utah

Claire Raftery 0 5553

The integration and testing processes for the ICON payload have begun! All of the instruments have been shipped to the Space Dynamics Laboratory (SDL) in Logan Utah and integrated into the payload deck, with the Instrument Control Package due for shipment by the end of the month. IVM-B is coming soon as well, closing out the full complement of instruments.

The integration and testing - or I&T - procedures are a vital part of preparing for flight. The instruments have been built all over the country - California, Texas, and Virginia. In order to ensure that they will be able to function together as planned, they are brought together on the Payload Integration Plate (PIP). The PIP, the instruments, and the Instrument Control Package together become the science payload, which will then undergo a series of thorough vibration and thermal tests at SDL over the coming months.

Following I&T, the payload will be shipped from Utah to Orbital ATK in Virginia, where it will be integrated onto the main spacecraft “bus” - the guts of the satellite that controls communication, attitude, and other overall controls. This will happen towards the end of 2016, in preparation for launch in summer 2017.

2016 will be an exciting year for the ICON mission

Claire Raftery 0 5174

2016 will be an exciting year for the ICON mission. This year will see the assembly and test of the complete scientific payload (the collection of instruments and telescopes ICON will carry), the completion of the spacecraft (the main body of the satellite), and when these come together, the assembly and test of the full ICON observatory.

Over the next two months, all of the ICON instruments, the Instrument Control Package (ICP), and other key components will be delivered to the Space Dynamics Laboratory (SDL) in Utah for integration into the payload. Once integrated into a single payload package, it will undergo specialized vibration and vacuum tests to simulate the conditions of launch and operations on orbit.

Once the payload performance has been confirmed, the payload package will be delivered to Orbital ATK in Virginia, who are building the main body of the spacecraft, called the “bus”. Delivery is planned for mid-year, which will give Orbital ATK ample opportunity to test the entire observatory and prepare it for integration with the Pegasus launch vehicle in Spring of 2017.

Meanwhile, the science team will be busy completing the software needed to download and manipulate the data taken by ICON’s instruments to prepare the data pipeline for receipt of real (rather than simulated) data soon after launch in June of 2017.

Follow the mission’s progress at http://icon.ssl.berkeley.edu/News/Blog or on twitter @NASASunEarth

El Niño has effects all the way to the edge of the atmosphere.

Claire Raftery 0 9493
-- December 16, 2015

The warm El Niño conditions affecting weather around the Pacific Ocean are also affecting conditions in space, according to University of California, Berkeley scientists.

El Niño is commonly observed as a global change in rainfall due to changes in temperature in the Pacific Ocean. However, UC Berkeley scientists report today at the annual meeting of the American Geophysical Union meeting in San Francisco that the processes that lead to increased precipitation are also driving unexpected changes in the ionosphere, the uppermost level of the atmosphere.

The findings (AGU abstract #SA31F-2383) will be presented by Dr. Thomas Immel, and are based on calculations by Dr. Astrid Maute of the High Altitude Observatory in Boulder, Colorado.

“We expected that we would see some changes in the ionosphere when we started this study” says Dr. Immel, a Senior Fellow at UC Berkeley’s Space Sciences Laboratory, “but we were shocked at how strong the effect has turned out to be”.

IVM Starts Final Functional and Environmental Testing

Claire Raftery 0 4123
The first of two IVMs, which is designated IVM-A based on its location on the spacecraft (facing forward), started End Item Testing (EIT) this week. The EIT is a thorough functional checkout including calibration over temperature and serves as the entry point baseline for environmental testing. Environmental testing will include EMI/EMC, Vibration and Thermal Vacuum testing which simulate the launch and flight environments as closely as possible. Testing will be completed in about eight weeks. 

While the IVM enjoys many years of heritage, the ICON IVM has improvements and modifications that will produce measurements of the plasma drift with unprecedented sensitivity to achieve the ICON science goals. 

The second IVM (IVM-B) fabrication is following closely behind IVM-A and is in the final phases of test and assembly. IVM-B faces in the aft direction on the spacecraft during normal operations, when the remote sensing optical instruments view the northern hemisphere. However, it will be activated during operations when the spacecraft is rotated to allow the optical instruments to view the southern hemisphere.

RSS
123
ICON skin is based on Greytness by Adammer
Background image, courtesy of NASA, is a derivitave of photograph taken by D. Pettit from the ISS, used under Creative Commons license