Exploring Where Earth's Weather Meets Space Weather

The Ionospheric Connection Explorer (ICON), the newest addition to NASA’s fleet of Heliophysics satellites, launched on October 10, 2019 at 9:59 p.m. EDT. Led by UC Berkeley, scientists and engineers around the world came together to make ICON a reality.

The goal of the ICON mission is to understand the tug-of-war between Earth’s atmosphere and the space environment. In the "no mans land" of the ionosphere, a continuous struggle between solar forcing and Earth’s weather systems drive extreme and unpredicted variability. ICON will investigate the forces at play in the near-space environment, leading the way in understanding disturbances that can lead to severe interference with communications and GPS signals.

Mission Operations News

Mission Operations News

ICON Temperatures Updated to Version 6, Now Available

Colin Triplett 0 136

The MIGHTI temperature product (L2.3) has been updated to version 6 (v06) and is currently available for the full mission on the ICON FTP site and at SPDF. 

With this version update, the MIGHTI-A and MIGHTI-B temperature data are both more rigorously tested to ensure continuity across the solar terminator. Also, the top of the daytime MIGHTI-A temperature profiles is now 135 km, up from 127 km in previous versions. Links to the data products are provided here:

ICON FTP MIGHTI

CDAWeb MIGHTI-A

CDAWeb MIGHTI-B

Prior to using these data, please review the data product documentation here:

ICON FTP Temperature V06 Documentation

RSS

Latest News

News

2016 will be an exciting year for the ICON mission

2016 will be an exciting year for the ICON mission

2016 will be an exciting year for the ICON mission. This year will see the assembly and test of the complete scientific payload (the collection of instruments and telescopes ICON will carry), the completion of the spacecraft (the main body of the satellite), and when these come together, the assembly and test of the full ICON observatory.

Over the next two months, all of the ICON instruments, the Instrument Control Package (ICP), and other key components will be delivered to the Space Dynamics Laboratory (SDL) in Utah for integration into the payload. Once integrated into a single payload package, it will undergo specialized vibration and vacuum tests to simulate the conditions of launch and operations on orbit.

Once the payload performance has been confirmed, the payload package will be delivered to Orbital ATK in Virginia, who are building the main body of the spacecraft, called the “bus”. Delivery is planned for mid-year, which will give Orbital ATK ample opportunity to test the entire observatory and prepare it for integration with the Pegasus launch vehicle in Spring of 2017.

Meanwhile, the science team will be busy completing the software needed to download and manipulate the data taken by ICON’s instruments to prepare the data pipeline for receipt of real (rather than simulated) data soon after launch in June of 2017.

Follow the mission’s progress at http://icon.ssl.berkeley.edu/News/Blog or on twitter @NASASunEarth

Previous Article El NiƱo has effects all the way to the edge of the atmosphere.
Next Article ICON integration and testing is underway at the Space Dynamics Lab in Utah
Print
5426
ICON skin is based on Greytness by Adammer
Background image, courtesy of NASA, is a derivitave of photograph taken by D. Pettit from the ISS, used under Creative Commons license