ICON's current location. Click here to go to the ICON position plotter tool for other times.

Mission Operations News

2016 will be an exciting year for the ICON mission

Claire Raftery 0 4253

2016 will be an exciting year for the ICON mission. This year will see the assembly and test of the complete scientific payload (the collection of instruments and telescopes ICON will carry), the completion of the spacecraft (the main body of the satellite), and when these come together, the assembly and test of the full ICON observatory.

Over the next two months, all of the ICON instruments, the Instrument Control Package (ICP), and other key components will be delivered to the Space Dynamics Laboratory (SDL) in Utah for integration into the payload. Once integrated into a single payload package, it will undergo specialized vibration and vacuum tests to simulate the conditions of launch and operations on orbit.

Once the payload performance has been confirmed, the payload package will be delivered to Orbital ATK in Virginia, who are building the main body of the spacecraft, called the “bus”. Delivery is planned for mid-year, which will give Orbital ATK ample opportunity to test the entire observatory and prepare it for integration with the Pegasus launch vehicle in Spring of 2017.

Meanwhile, the science team will be busy completing the software needed to download and manipulate the data taken by ICON’s instruments to prepare the data pipeline for receipt of real (rather than simulated) data soon after launch in June of 2017.

Follow the mission’s progress at http://icon.ssl.berkeley.edu/News/Blog or on twitter @NASASunEarth

FUV Ships to Belgium for Alignment, Environmental Tests and Calibration in the Far Ultra Violet

Claire Raftery 0 3895

The preliminary alignment for the Far Ultraviolet Spectrograph (FUV) instrument using visible wavelength light has been completed at Lockheed Martin. The next phase of testing will see the instrument ship to Belgium to complete the alignment in the FUV in a specialized vacuum chamber.

The FUV ICON instrument has an articulating field of view. In order to accommodate this, special machinery is required to rotate the instrument during alignment, testing and calibration while inside the vacuum chamber. Centre Spatial de Liege (CSL) in Belgium will provide this unique ultraviolet vacuum facility.

The design for the FUV instrument is such that the optical system can be focused using visible light and a visible grating, as well as FUV light and grating. This is preferable, since alignment using UV must be performed in a vacuum chamber, which makes it more challenging to conduct the alignment.

Over the past four weeks, the SSL team has been traveling to Lockheed Martin where the instruments’ mirrors were carefully adjusted to achieve best focus and optimum spectral performance at visible wavelengths. The visible wavelengths chosen were suitably scaled to simulate performance at the FUV operating wavelength.

The next phase of testing will see the optics package ship to Centre Spatial de Liege (CSL) in Belgium. After verifying the visible alignments were maintained, and no shifts happened during transport, the UV grating and the two UV cameras will be installed and UV alignment will begin.

ICON skin is based on Greytness by Adammer
Background image, courtesy of NASA, is a derivitave of photograph taken by D. Pettit from the ISS, used under Creative Commons license