
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1002/,

PYSAT: Python Satellite Data Analysis Toolkit

R. A. Stoneback , A. G. Burrell , J. Klenzing, M. D. Depew

R. A. Stoneback, W. B. Hanson Center for Space Sciences, 800 W. Campbell Rd. WT 15,

Richardson, TX 75080, USA. (rstoneba@utdallas.edu)

A. G. Burrell, W. B. Hanson Center for Space Sciences, 800 W. Campbell Rd. WT 15,

Richardson, TX 75080, USA.

J. Klenzing, Space Weather Lab / Code 674, Goddard Space Flight Center, Greenbelt, MD,

USA

M. D. Depew, W. B. Hanson Center for Space Sciences, 800 W. Campbell Rd. WT 15,

Richardson, TX 75080, USA.

1W. B. Hanson Center for Space Sciences,

Physics Department, University of Texas at

Dallas, Richardson, Texas.

D R A F T April 22, 2018, 5:35pm D R A F T



X - 2 STONEBACK ET AL.: PYSAT

Abstract. A common problem in space science data analysis is combin-1

ing complementary data sources that are provided and analyzed in differ-2

ent formats and programming languages. The Python Satellite Data Anal-3

ysis Toolkit (pysat) addresses this issue by providing an open source toolkit4

that implements the general process of space science data analysis, from be-5

ginning to end, in an instrument independent manner. This toolkit uses an6

Instrument object that enables systematic analysis of science data from a7

variety of platforms within a single interface. Basic functions such as down-8

loading, loading, and cleaning are included for all supported instruments. Com-9

mon analysis routines are also included, which are instrument and data source10

independent. A nano-kernel is used to provide instrument independence, it11

is attached to the Instrument object and mediates the systematic and ar-12

bitrary modification of loaded data. Pysat uses the nano-kernel to improve13

the rigor of time series analysis, support on-the-fly orbit determination, and14

cleanly span file breaks. Pysat’s functions and higher level scientific analy-15

sis features are validated through the use of unit testing. Further adoption16

by the community provides a set of scientific results produced by a common17

core, constituting a distributed heritage that supports the validity of the un-18

derlying processing and scientific output. These features are used to demon-19

strate consistency between derived electron density profiles and measured20

ion drifts, particularly downward ion drifts in the afternoon hours during ex-21

treme solar minimum. Pysat builds upon open source Python software that22

is freely available and encourages community driven development.23
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1. Introduction

The study of the geospace environment requires a wide variety of measurement tech-24

niques and a large number of measurement platforms. The quantity of data itself can be a25

problem due to the variety of file formats and the unique characteristics of the underlying26

data. These practical difficulties hinder scientific advancement and result in duplicated27

efforts, as individual scientists or research groups create their own tools to solve old prob-28

lems. The scale and impact of these duplicated efforts has become intolerable now that29

the geospace community has begun to take a system science approach, which requires inte-30

grating measurements from multiple platforms to understand the environment as a whole31

[CEDAR, 2010; Gil et al , 2016]. Thus, there is a need for a framework to accommodate32

these varied data sets in an open and reproducible manner, while enabling versatility to33

pursue various avenues of scientific investigation.34

To support these goals, a variety of open source python packages have been released. Py-35

Glow collects a variety of space science models in one place, simplifies installation, and pro-36

vides a python interface [Duly et. al., 2013]. Apexpy [Mereen et al , 2018] and AACGMv237

[Burrell and Meeren, 2018] provide interfaces to magnetic field models. OCBPy is a38

Python module that converts between AACGM coordinates and a magnetic coordinate39

system that adjusts latitude and local time relative to the Open Closed field line Boundary40

(OCB) [Burrell and Chisham, 2018]. DaViTPy [DaViTPy , 2012] provides a suite of tools41

designed to support the Super Dual Auroral Radar Network (SuperDARN) [Greenwald42

et al., 1995; Chisham et al., 2007]. GeoData [Swoboda et al , 2016] is an API for obtain-43

ing and visualizing space science data, with current support for ground based systems.44
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The Madrigal database, a repository of many space science measurements, has a python45

interface [Rideout , 2004]. SpacePy [Morely et al , 2010] includes a variety of tools to sup-46

port space science, a partial list includes field line tracing, file format support, coordinate47

conversions, superposed epoch analysis support, and time support functions. pysatCDF48

[Stoneback and Depew , 2018] provides a python interface to NASA CDF libraries and ad-49

ditional functionality to format this data for coupling with pysat. To simplify installation50

the NASA CDF source code is included within pysatCDF and compiled automatically51

using standard community tools. A pure python implementation for CDF reading and52

writing without the use of the NASA C library is under development [Harter and Liu,53

2018].54

The Python Satellite Data Analysis Toolkit (pysat) presented here is an open source55

software package that handles the tedious details of file and data handling with a consistent56

front end, allowing researchers to focus on the unique aspects of their scientific research.57

Pysat’s design evolved through years of data analysis using a variety of space and ground58

based platforms and data types to enable the versatility required to address scientific59

questions within a single interface. The generalized treatment of data sets and processing60

by pysat provides the common ground needed to integrate many python package and61

sources of data and into a cohesive whole that enables system science.62

Pysat support begins with assisting users in obtaining data. Each instrument supported63

by pysat includes routines to download data from appropriate public locations, organize64

the files on the local computer, and clean the data.65

Pysat handles both data and metadata, data about the loaded data, with support for66

handling files of differing metadata standards in a consistent and robust manner. Even67
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within the same file standard, differing capitalization (case) may be found across files68

from different teams. Pysat handles metadata in a case preserving manner that is also69

case-insensitive, enabling ease of use.70

To enable the custom processing required by novel scientific investigations pysat includes71

funcitonality that mediates the application of custom functions upon data as it loaded.72

This design pattern ensures the availability of the newly processed parameters across all73

levels of pysat, with no additional effort required by the user.74

To ease data distribution, routines have been created that transparently write a pysat75

Instrument object to disk in a netCDF4 file, as well as load that file and produce the same76

pysat Instrument object. These routines are written to be consistent with a combined77

netCDF4 and NASA CDAWeb standard employed by the upcoming NASA ICON mission.78

The validity of pysat functions and instrument independent analysis is verified through79

the use of unit testing. Automated tests have been developed that test instrument support80

routines, assisting new users in developing new instrument routines, while also ensuring81

that these routines continue to work. In addition to isolated unit tests that verify specific82

outputs from isolated functions, simulated instruments have been developed to support83

the testing of pysat and associated functions as users would interact with the system. As84

changes are committed to pysat, the test suite is automatically run, ensuring validity and85

compatibility throughout the development process.86

These features support the development and use of instrument independent analysis87

routines allowing users to focus on the unique aspects of their research project. Pysat’s88

openness to community development also provides a place for researchers to disseminate89

their analysis routines used in their work. The application of an instrument independent90
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seasonal bin averaging routine is demonstrated here as an example of one such routine,91

using remote measurements from COSMIC [Yue et al., 2010] and in situ measurements92

from C/NOFS [de La Beaujardire et. al., 2004]. Despite the large difference in measure-93

ment type and data format, the same seasonal routine is used on both platforms. This94

demonstrates geophysical consistency between the platforms. The use of seasonal bin95

averaging is widespread in space science data analysis, thus pysat’s validated instrument96

independent implementation of this technique could assist many scientific studies using97

the same underlying code.98

2. Instrument Object

The core functionality of pysat lies in the Instrument object. The intent of the In-99

strument object is to offer a single interface for interacting with science data that is100

independent of measurement platform. The layer of abstraction presented by the Instru-101

ment object is required for instrument independent analysis procedures, but it can also102

make science data analysis simpler and more rigorous.103

As a simple metaphor, a software object is like a box with buttons. Inside the box the104

object stores required data and the buttons on the box call methods that understand how105

to interact with the data and produce the desired products. The pysat Instrument object106

follows this guideline by storing science data within an object that also includes a number107

of basic functions designed to load, modify, and analyze the data over arbitrary periods.108

Data is stored internally in a Python Data Analysis Library (pandas) DataFrame, a format109

chosen due to its time based array indexing and its ability to align multiple data products.110

The pandas DataFrame is capable of storing higher dimensional objects, enabling mixed111

dimensionality data sets [McKinney , 2010].112
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Pysat supports one data set per Instrument object, where a data set is defined as having113

a single platform, instrument, measurement type, and satellite identifier, as appropriate.114

Though the particulars of the files and data differ greatly between missions, the interface to115

the data through the Instrument object remains constant. As an example, consider how to116

initialize Instrument objects for magnetometer data from the Vector Electric Field Instru-117

ment (VEFI) or electron data from the Planar Langmuir Probe (PLP) that flew onboard118

the Communications/Navigation Outage Forecasting System (C/NOFS), thermal plasma119

measurement from the Ion Velocity Meter (IVM) also on C/NOFS; Global Positioning120

Signals (GPS) from the Constellation Observing System for Meteorology, Ionosphere, and121

Climate (COSMIC) satellites, or high-level, ground-based radar measurements from the122

northern hemispheric portion of Super Dual Auroral Radar Network (SuperDARN):123

vefi = pysat.Instrument(platform=’cnofs’, name=’vefi’, tag=’dc_b’)124

ivm = pysat.Instrument(platform=’cnofs’, name=’ivm’)125

cosmic = pysat.Instrument(platform=’cosmic2013’, name=’gps’, tag=’ionprf’)126

darn = pysat.Instrument(platform=’superdarn’, name=’grdex’, tag=’north’)127

Note how each instrument requires a different level of specificity based on the division128

of data products within each mission. The full list of supported instruments is available129

directly in python by inspecting the submodules, as well as within the pysat documenta-130

tion. Details about the options available for each instrument are stored directly within131

the code through a python commenting standard called a docstring. These docstrings are132

automatically collected and presented in the pysat documentation, reflecting the current133

state of the instrument suite. The pysat documentation is integrated with a continuous134

documentation service and is automatically generated as versions are released.135
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For each instrument, pysat looks for supporting routines that understand the unique136

qualities of the data set and handles the translation into a pysat compatible format. When137

no existing routines are available, they may be added to pysat. However, if no pysat138

specific support exists but there are already existing packages to support the loading of139

a data set, this functionality does not need to be recreated. For example, support for140

SuperDARN is fundamentally enabled by DaViT Python Project routines, which obtain141

and load the SuperDARN files.142

Pysat support for some public data sources may be generalized. In these cases adding143

a new instrument to pysat may only involve little effort. Routines have been created144

for NASA’s CDAWeb Common Data Format (CDF) and included with pysat. Pysat’s145

support of C/NOFS’ IVM, VEFI, PLP, and NASA’s OMNI data sets are all driven by146

these routines. The only differences in pysat’s support for each instrument are the cleaning147

routines, public data locations, and filename details.148

Though the particulars of VEFI magnetometer data, IVM plasma parameters, COS-149

MIC atmospheric measurements, and SuperDARN backscatter measurements are very150

different, the processes for high level operations on these data are the same. Data for any151

Instrument may be obtained from data servers intended for public distribution and stored152

locally by using the ’download’ function, and data may be loaded for each instrument153

using the ’load’ function. There are multiple options available when instantiating objects154

and when loading data that are fully explained in the pysat documentation, but outside155

the scope of this document.156

As mentioned previously, pysat uses the pandas DataFrame to store information inter-157

nally. The DataFrame is similar to a spreadsheet, possessing labeled columns and rows.158
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Pysat labels labels columns by the data name and rows by date and time. When opera-159

tions are performed on the underlying data, row indices are aligned before performing the160

operation. The loaded data may be accessed at the object level using strings. Support161

for slicing and other operations is included.162

For the one dimensional measurements in time, each column in the pandas DataFrame163

is a simple indexed array of numbers. However, the pandas DataFrames also support164

general collections of objects, used here to support higher dimensional data structures,165

such as the two dimensional electron density profiles from COSMIC. This is shown below166

for the first four elements of a COSMIC electron density profile. Note that the profile for167

this single time is also indexed by altitude.168

In[]: cosmic[0,’profiles’]169

Out[]:170

ELEC_dens GEO_lat171

MSL_alt172

59.592628 34801.515625 49.295200173

62.223614 31884.595703 49.303425174

64.850388 32775.335938 49.311638175

67.472939 29608.988281 49.319843176

2.1. MetaData

Maintaining information about the data set is important. Pysat has built-in support to177

keep track of metadata, stored in a Meta object attached to the Instrument object. Meta-178

data may be accessed by name at the object level, similar to standard data. Metadata179

may be assigned when data is assigned, or as needed. By default, units, name, notes,180
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description, plot label, axis label, fill value, and plot scaling (linear vs log) are always181

tracked by the Instrument object, though arbitrary additional parameters may be added.182

When writing to a file, these metadata parameters are translated into a mixed standard183

spanning file requirements for the netCDF4 files as well as the International Solar Terres-184

trial Physics (ISTP) standard employed by NASA’s CDAWeb. Parameters that may be185

determined through simple inspection of the data are not tracked.186

To help maintain compatibility with multiple standards, the pysat Meta object allows187

for user specified string labels to identify particular metdata types (fill, units, notes).188

As an example for fill values, netCDF4 files should use ’ FillValue’ while ISTP specifies189

’FillVal’. Case is preserved for these labels however data access is case-insensitive, thus190

’units’ works in code even if the label is strictly ’Units’. Label independent access is also191

provided, thus users can use attributes attached to the pysat Meta object to access the192

desired metadata type without specifying the string used to label those values.193

2.2. Modifying Data

Frequently, data sets need to be modified before a larger analysis may be completed.194

Instrument specific modifications are handled in pysat by a nano-kernel with a custom195

processing queue. Functions may be added to the queue as needed, and whenever new196

data is loaded the nano-kernel will apply the ordered functions before making the data197

available to the user. This configuration ensures that the newly calculated data has198

the same properties and availability as parameters that are native to the file. A data199

cleaning example is shown below. This code segment selects only VEFI magnetometer200

measurements made at times when the magnetic torque rods on the spacecraft, used for201

momentum control, were not contaminating the magnetic field environment.202
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# define function to remove flagged values203

def filter_vefi(vefi):204

idx, = np.where(vefi[’B_flag’]==0)205

vefi.data = vefi[idx, :]206

return207

# add custom function to instrument208

vefi.custom.add(filter_vefi, ’modify’)209

Once added, this function will filter the available VEFI data, modifying it in place,210

every time vefi.load is called.211

2.3. Data Flow

The full data flow through the Instrument object when a load call is invoked is shown in212

Figure 1. Instrument specific functions (purple) translate the specifics of the given data213

set into a format suitable for pysat. Options and other parameters provided by the user214

are supplied as needed, shown in green. Pysat invokes the instrument specific functions215

as needed to provide the user with data in the desired form. Functions handled by pysat216

are shown in blue.217

3. Generalized Space Science Solutions

Pysat builds upon the consistent object interface across data sets to enable generalized218

solutions for space science data analysis and visualization. At a basic level, all analysis219

routines that use the pysat Instrument object gain some independence from the particulars220

of the analyzed data. For example, string based data access makes it easy to support221

programmatic use of data. This and other pysat features allow many analytical processes222

D R A F T April 22, 2018, 5:35pm D R A F T



X - 12 STONEBACK ET AL.: PYSAT

to be generalized. Several examples of pysat generalized solutions to common space science223

data problems are discussed in this section.224

3.1. Recreating Continuous Data from Files

Measurements of continuous processes by scientific instruments are eventually divided225

into chunks and stored separately on a file system. These file boundaries can interfere226

with calculations, particularly for those times near the file edges. For example, consider227

a simple centered smoothing filter that averages a set number of measurements in time.228

The start and end of the time series will not have enough samples to obtain the result.229

To handle this problem, as well as the possibility of data gaps, a user must choose how to230

balance the quality and coverage of the output.231

Pysat offers a solution to the problem of file breaks in a data set that requires no specific232

support by any user supplied routine. When activated, pysat maintains an internal data233

buffer that spans three files/days, depending upon user selected parameters. Each time234

a user loads data, pysat centers the data buffer on the requested time, downselects from235

this full buffer the requested data plus a user specified amount of data padding, applies236

any user directed custom functions, and then removes the padded data before making the237

full results available to the user (see Figure 1). This solution does not fix the calculation238

everywhere, but rather pushes the boundaries where the calculation degrades outside the239

desired time range and then removes the degraded calculations.240

The resulting output is equivalent to a continuous data set, barring measurement gaps.241

The time period for this padding is arbitrary up to a maximum additional file or day.242

While this limits the maximum continuous data period available for a time based calcula-243

tion, shorter period calculations may be applied without error over an effectively infinite244
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time series while only using a small amount of computer memory. Applying this feature245

over N days only requires N+2 loads from the filesystem. Custom functions applied by the246

nano-kernel when data padding is enabled do not need to explicitly support the feature,247

as the data padding is removed after the custom functions are applied.248

3.2. Iterating over Time Periods and Orbits

Seasons are one of the natural temporal divisions of geophysical data. To assist the249

production of seasonally averaged pictures of the upper atmosphere, the temporal analysis250

loop can be used to load data for a specified range of dates, one file at a time, and operated251

on as needed for the desired analysis. The temporal analysis loop is a special case of the252

iteration that is built into the pysat Instrument object. A simple pair of dates may be set253

for a single season, or a range of dates may be provided for a more distributed temporal254

analysis. The iteration is activated through standard Python functionality, using the same255

mechanism employed when iterating over Python list elements. Each loop triggers a load256

data call on the pysat Instrument object for the next day of data within the desired date257

range.258

This basic data iteration support is sufficient for daily or orbit-based analysis of science259

data sets. Since not all data sets are stored by day, pysat includes functionality to parse260

from multiple files the data that corresponds to the requested day. Similarly, pysat is261

designed to support real-time determination of orbit breaks from the data set, and then262

iterate over these orbits as desired. Orbits that cross file boundaries are handled using263

the pysat Instrument’s iterative functions, moving forward or backward within the data264

to determine if the desired orbit begins or ends across one of these filebreaks and then265

includes the appropriate data.266
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This combination of features makes it straightforward to make an orbit by orbit plot267

for any of the satellite missions supported by pysat. A simple code example for plotting268

the entirety of the VEFI data set by orbit is shown below, while the results are shown in269

Figure 2. For this particular example the orbits are set to begin and end at 0◦ geographic270

longitude.271

# instantiate instrument with desired orbit breakdown272

orbit_info = {’index’:’longitude’, ’kind’:’longitude’}273

vefi = pysat.Instrument(platform=’cnofs’, name=’vefi’, tag=’dc_b’,274

clean_level=None, orbit_info=orbit_info)275

# iterate over dataset, orbit by orbit276

for count, vefi in enumerate(vefi.orbits):277

# One orbit of data is now accessible via vefi.data278

# To ensure data gaps do not have a line drawn across the gap,279

# resample data onto constant 1 second cadence, filling in gaps with NaN280

vefi.data = vefi.data.resample(’1S’, fill_method=’ffill’,281

limit=1, label=’left’ )282

# data is ready to be plotted283

3.3. Instrument Independent Seasonal Analysis

Pysat functionality has been used to develop several seasonal analysis routines that are284

instrument and iteration independent. An example using a pysat occurrence probability285

routine is shown, reproducing the fundamental processing used to obtain published results286

by Stoneback and Heelis [2014]. Note that the pysat analysis covers all of the data loading,287

iteration, and analysis. No specific support for VEFI was included in the routine. The288
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routine calculates the number of times a given value exceeds a supplied threshold at289

least once per temporal period (day, file, or orbit), divided by the number of times a290

given spatial bin is visited per temporal period. As a demonstration, the probability of291

a positive perturbation in the meridional component of the geomagnetic field by orbit is292

shown over a week for VEFI in Figure 3.293

To help ensure the plotted data is geophysical, the VEFI torque rod exclusion function294

introduced earlier is attached to a VEFI pysat object. This function selects data when295

magnetic torquers on C/NOFS were idle. The torque rod firings interfered with the296

electromagnetic measurements and are generally located near the magnetic equator. The297

reduction in counts in Figure 3(b) along the magnetic equator demonstrates that the298

custom function is properly selecting data. The code to produce Figure 3 follows:299

# instantiate instrument with desired orbit breakdown300

orbit_info = {’index’:’longitude’, ’kind’:’longitude’}301

vefi = pysat.Instrument(platform=’cnofs’, name=’vefi’, tag=’dc_b’,302

clean_level=None, orbit_info=orbit_info)303

# add custom torque rod filter function to instrument304

vefi.custom.add(filter_vefi, ’modify’)305

# set time limits on data analysis306

start = pysat.datetime(2010,5,9)307

stop = pysat.datetime(2010,5,15)308

# download data for specified time period309

vefi.download(start, stop)310

# perform probability calculation. Any data added by custom functions is311
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# available within routine below312

ans = ssnl.occur_prob.by_orbit2D(vefi, [0,360,144], ’longitude’,313

[-13,13,104], ’latitude’, [’dB_mer’], [0.], returnBins=True)314

# a dictionary object with keys corresponding315

# to data labels is returned316

# results are ready for plotting317

Pysat also includes generalized seasonal analysis routines that support averaging mul-318

tiple instrument parameters of various dimensionality over a season. Here we use this319

functionality to average both IVM and COSMIC data, enabling comparisons between the320

average distributions of ion density and ion drift. The same general process used to ob-321

tain the VEFI occurrence probability is used; both IVM and COSMIC pysat objects are322

instantiated and passed along to the seasonal pysat routines for analysis. The COSMIC323

data set does not come with location information in geomagnetic coordinates, or with324

information on the topside scale height, so these parameters are calculated using custom325

functions and applied to the data set automatically using the nano-kernel functionality.326

The nano-kernel functionality ensures that the custom COSMIC parameters are available327

for averaging within the seasonal bin averaging routine.328

Figure 4 includes ion drift measurements from IVM and electron density profile param-329

eters from COSMIC, seasonally averaged over apex longitude and local time. The use330

of apex longitude organizes the data based upon the apex location of the geomagnetic331

field line at the measurement location. IVM derived vertical ion drifts are at the top332

followed by the COSMIC derived ion density maximum, height of the density maximum,333

and the thickness of the density distribution. This ion drift average displays downward334
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afternoon ion drifts, a characteristic of the ionosphere during very low solar activity levels335

Stoneback et al [2011]. These ion drifts employ a geophysically motivated calibration to336

appropriately set the zero ion drift level used when translating raw IVM measurements337

to geophysical ion drifts [Stoneback et al , 2011].338

In the late afternoon and evening sector, longitudinal and local time variations in the339

meridional ion drift recorded by IVM have equivalent variations in the altitude of the340

density maximum recorded by COSMIC. A strong correlation between drifts and density341

is not expected during the morning through afternoon as plasma production from sunlight342

is a dominant driver of density. In the late afternoon and evening hours, when plasma343

production and loss processes are small or nearly equal, redistribution of the plasma to344

different altitudes through transport by ion drifts are expected to have a measurable345

impact upon the ionosphere. The results in Figure 4 between 15 - 24 local time have346

a strong apparent correlation between areas with upward (downward) ion drifts and an347

increase (decrease) in the height of the density maximum across all longitudes.348

The full electron density profiles from COSMIC are shown in Figure 5 and correspond349

to the first four longitude sectors (0◦ − 60◦) in Figure 4. The first two longitude sectors350

(top panel) have upward slants in the bottomside density distribution at night, consistent351

with the upward drifts after sunset in Figure 4. In contrast, the bottom two panels, show352

longitudes associated with downward drifts in the evening and have flat bottomside ion353

distributions at night. These changes in the bottomside density profiles are consistent354

with the meridional plasma drift, because a negative drift moves plasma to lower altitude355

field lines with higher neutral densities, where loss processes rise exponentially. This effec-356

tively produces a minimum viable altitude for the nighttime ionosphere. The consistency357
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demonstrated between IVM and COSMIC measurements provides supporting evidence358

that both platforms are reporting measurements with geophysical significance that have359

been analyzed in a consistent and appropriate manner. The same generalized seasonal360

analysis code was used for both IVM and COSMIC. The complete code to produce these361

figures is included in the pysat repository under demos.362

3.4. Validating Results

To validate space science results, both the code and the underlying data must be tested.363

A suite of unit tests have been developed to help ensure robust performance of pysat and364

its features. These tests initialize the system in a known state, perform a limited set of365

operations, and then compare the result of those operations against a known output. The366

pysat development repository is connected to a continuous integration service, which runs367

the test suite after every change to the codebase. Currently, 460 unit tests cover 82% of368

pysat’s code, as determined using standard community tools. Basic tests cover options for369

instantiating the pysat Instrument object and its handling of data, metadata, and files.370

To facilitate the testing of pysat features that require science data, such as the nano-371

kernel support, orbit-by-orbit iteration, and instrument independent analysis functions,372

testing instrument platforms are also included. These pysat test instruments operate like373

a normal pysat Instrument object. However, the typical load routines that read science374

data from the filesystem are replaced with a basic simulation of satellite motion. Signals375

representing the large scale periodic features of local time, longitude, latitude, altitude,376

etc. are generated. These routines produce infinite continuous streams of reproducible377

data that may be used as known inputs in a unit testing framework.378
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The general process of determining orbits from a random science data set faces a number379

of data and file issues. Accounting for these variables, along with the various input options380

that can be selected, required a significant testing suite. Iterating by orbit requires, in part,381

determining where orbit breaks occur, completing orbits across file breaks, accounting for382

data gaps, and ensuring consistent orbit numbering. To cover all of these options a383

general class of orbit tests were created that produced a wide range of data and file gaps.384

Each problem type is expanded upon to ensure coverage for edge and pathological cases.385

This whole suite of tests is then run using each type of orbit pysat supports (local time,386

longitude, latitude, orbit number), ensuring that loading or processing data by orbit will387

not affect the scientific analysis.388

Unit tests have also been developed to monitor the instrument specific routines that389

download, load, and clean science data as part of the pysat process. Each run of the unit390

testing suite downloads, loads, and cleans test days for pysat supported instruments using391

data obtained from the appropriate public data source. General pysat compliance is also392

checked, assisting users developing code to support new instruments. Some instruments393

have to be excluded from parts of the testing process, as access to the data sources requires394

authentication.395

3.5. Creating Data for Distribution

Creating data sets suitable for distribution has remained a challenge. Files that are easy396

to put together lack the metadata for a self-supporting specification of the data. Formats397

that are capable of storing a wide variety of data, formats, and metadata generally require398

significant effort to provide this information. Pysat approaches this issue on two fronts.399

Pysat includes metadata by default. Thus, as a routine to create a dataset is written,400
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both the data and metadata may be specified naturally. Following best coding practices,401

the data specification work is distributed across the whole development effort.402

When a pysat Instrument object loads data both the instrument data and metadata403

are pulled from the file and attached to the pysat Instrument object. File routines have404

been created to reverse this process and transparently store a pysat object to disk as a405

netCDF. As many different data schemes may be stored within pysat, a translation layer406

has been developed that stores the data in the netCDF in a format intuitive to humans.407

A complementary netCDF load routine is also included with pysat, making it possible408

to recover the original pysat Instrument object state without any additional processing.409

Recovery back to the original pysat object relies upon a variable naming pattern, and410

thus is not guaranteed for non-pysat netCDFs.411

4. Future Possibilities

Pysat provides a systematic and versatile framework for the arbitrary modification and412

analysis of data. A selection of instruments and analyses are included that currently413

reflect the research interests of the authors. The list is not exhaustive. Since instrument414

data types ranging from in situ satellite data, satellite based remote sensing data, and415

ground based data have already been successfully integrated into pysat, a wide range of416

instruments are expected to be supported without significant changes to pysat’s structure.417

With community support, the full range of space science data sets could be available from a418

single, consistent interface. Additional analysis types, such as superposed epoch analysis,419

can also be added to pysat.420

Pysat’s support for test instruments and inclusion of unit testing provides a mechanism421

to validate analysis code. Details of exhaustive test procedures are not typically included422
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in scientific publications, limiting the ability of the audience to audit the analysis. Adop-423

tion of open source analyses such as pysat by the community provides a verifiable code424

standard that minimizes both the effort required by the author, as well as the innate425

level of trust required by the reader. The sum total of publications based upon pysat426

code provides a heritage base that supports future publications. This can be of particular427

importance for analyses that produce controversial results.428

Pysat’s structure enables a common ground and a single interface for all space science429

data sets. This does not preclude the development and use of instrument specific packages,430

as desired by the community. In these situations pysat can and will make use of the431

instrument specific tools when adding support for that instrument. In most cases, a thin432

translation layer from the native data format to the pandas DataFrame will provide the433

majority of the required functionality. A pair of functions that translate the data back434

and forth between standards would even enable the use of instrument specific processing435

functions from within pysat. While the instrument specific package may be optimal for436

primary instrument users, outside users could utilize the standard interface provided by437

pysat and still benefit from the creation of the instrument specific tools.438

The range of file management features required to support pysat also provide an under-439

lying basis for a CubeSat data processing system. While Explorer-level missions supported440

by NASA typically have enough funds to produce a dedicated software ecosystem to sup-441

port the processing of data, funding levels typically employed for CubeSats are insufficient442

for this level of software development. Pysat provides a foundation for file and data pro-443

cessing management that reduces the workload required to create a system capable of444

delivering upon the science goals of the mission. If leading CubeSat missions are willing445
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to use pysat for this purpose as well as contribute code back to the repository, this com-446

munity resource could increase both the dollar and science efficiency of future CubeSat447

missions.448

The functions provided by pysat constitute the underlying functionality needed to drive449

a Graphical User Interface (GUI) for easy visualization of data. In this scenario if a user450

finds something interesting visually and wanted to complete a more rigorous analysis451

the exact same tools would be available at the command line, providing continuity for452

scientific analysis. Given that user interface requirements can differ significantly based453

upon the analysis or instrument type, a range of specialized GUIs all powered by the same454

underlying pysat code would be ideal.455

Functionality provided by pysat also supports the creation of a Constellation object, a456

heterogenous collection of pysat Instrument objects. This abstraction will allow custom457

collections of instruments to be operated upon as a whole. As the processing required458

for each instrument within the constellation could be unique, custom functions may be459

attached to the Constellation object and applied to individual instruments automatically.460

Analysis functions and orbit determination on the constellation level are also planned.461

5. Conclusion

Pysat provides a systematic process for custom analysis of science data sets. The462

pysat Instrument object enables a complex flow for each user request of data, providing463

for an arbitrary relationships between the requested and archived data. This processing464

flow is used to solve problems associated with multiple data sets, data distribution in465

files, accurate time-series calculations, orbit determination, data modification, and the466

calculation of new scientific products. The combination of the pysat Instrument object,467
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pandas DataFrame, and this computational versatility enables instrument independent468

analysis and simplifies the comparison of results across data sets. These features are469

expected to be sufficient to enable integration of data sets across space science into a470

single common platform.471

The adoption of unit testing across the package provides a verification chain to ensure472

results are robust. Tests are applied to the Instrument object as well as the higher order473

analysis routines (seasonal bin averaging, etc.) The public availability of both the code474

and the tests provides a mechanism for verifiable and reproducible science. Should pysat475

be adopted by the wider community, additional validation is gained as scientists use and476

individually verify the tools as part of their own research. Thus, scientific papers that477

incorporate pysat not only benefit from the heritage established by previous use, each new478

use of pysat also provides validation that the outputs provided by pysat are scientifically479

valid.480

Pysat is being used as a foundational framework for ground station processing of IVM481

measurements for the upcoming ICON and COSMIC-2 missions. While work is still482

underway, pysat has been integrated by both CDAAC and the Berkeley ground software483

system in anticipation of these missions. The data flow generated by these missions will484

provide a strong heritage that future missions and science data analyses can build upon.485

Acknowledgments. Supported by NSF grant 125908 and NASA grant NNX10AT02G.486

The data used in this article may be obtained at:487

CDAWeb: http://cdaweb.gsfc.nasa.gov488

CDF Library: http://cdf.gsfc.nasa.gov.489

CDAAC: http://cosmic-io.cosmic.ucar.edu/cdaac/index.html490

D R A F T April 22, 2018, 5:35pm D R A F T



X - 24 STONEBACK ET AL.: PYSAT
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Figure 1. Pysat program flow when an pysat.Instrument.load() routine is called.
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Figure 2. Sample orbit figure using VEFI data, where the interp flag reflects times when

spacecraft operations could interfere with measurements.
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Figure 3. Seasonal occurrence probability demo using VEFI data. The location of the magnetic

equator may be seen in the lower data counts for the data distribution.
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Figure 4. Comparison of seasonal averages of IVM meridional ion drifts (top) and averages of

COSMIC profiles covering NmF2, hmF2, and topside scale height.
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Figure 5. Seasonal average of COSMIC electron density profiles.
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