Skip to main content
Log in

The Far Ultra-Violet Imager on the Icon Mission

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

ICON Far UltraViolet (FUV) imager contributes to the ICON science objectives by providing remote sensing measurements of the daytime and nighttime atmosphere/ionosphere. During sunlit atmospheric conditions, ICON FUV images the limb altitude profile in the shortwave (SW) band at 135.6 nm and the longwave (LW) band at 157 nm perpendicular to the satellite motion to retrieve the atmospheric O/N2 ratio. In conditions of atmospheric darkness, ICON FUV measures the 135.6 nm recombination emission of \(\mathrm{O}^{+}\) ions used to compute the nighttime ionospheric altitude distribution. ICON Far UltraViolet (FUV) imager is a Czerny–Turner design Spectrographic Imager with two exit slits and corresponding back imager cameras that produce two independent images in separate wavelength bands on two detectors. All observations will be processed as limb altitude profiles. In addition, the ionospheric 135.6 nm data will be processed as longitude and latitude spatial maps to obtain images of ion distributions around regions of equatorial spread F. The ICON FUV optic axis is pointed 20 degrees below local horizontal and has a steering mirror that allows the field of view to be steered up to 30 degrees forward and aft, to keep the local magnetic meridian in the field of view. The detectors are micro channel plate (MCP) intensified FUV tubes with the phosphor fiber-optically coupled to Charge Coupled Devices (CCDs). The dual stack MCP-s amplify the photoelectron signals to overcome the CCD noise and the rapidly scanned frames are co-added to digitally create 12-second integrated images. Digital on-board signal processing is used to compensate for geometric distortion and satellite motion and to achieve data compression. The instrument was originally aligned in visible light by using a special grating and visible cameras. Final alignment, functional and environmental testing and calibration were performed in a large vacuum chamber with a UV source. The test and calibration program showed that ICON FUV meets its design requirements and is ready to be launched on the ICON spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  • C.D. Anger, S.K. Babey, A.L. Broadfoot, R.G. Brown, L.L. Cogger, R. Gattinger, J.W. Haslett, R.A. King, D.J. McEwen, J.S. Murphree, E.H. Richardson, B.R. Sandel, K. Smith, A.V. Jones, An ultraviolet auroral imager for the Viking spacecraft. Geophys. Res. Lett. 14, 387 (1987)

    Article  ADS  Google Scholar 

  • D.R. Austin, T. Witting, I.A. Walmsley, Broadband astigmatism-free Czerny–Turner imaging spectrometer using spherical mirrors. Appl. Opt. 48, 3846 (2009). doi:10.1364/AO.48.003846

    Article  ADS  Google Scholar 

  • C.A. Barth, S. Schaffner, Ogo4 spectrometer measurements of the tropical ultraviolet airglow. J. Geophys. Res. 75, 4299–4306 (1970)

    Article  ADS  Google Scholar 

  • B. Bates, M. McDowell, A.C. Newton, Correction of astigmatism in a Czerny–Turner spectrograph using a plane grating in divergent illumination. J. Phys. E, Sci. Instrum. 3, 206–210 (1970)

    Article  ADS  Google Scholar 

  • P. Blain, R. Desselle, I. Domken, C. Kintziger, E. Renotte, Y.G. Stockman, C. Chou, H.U. Frey, K. Rider, S.B. Mende, J.J.D. Loicq, VUV optical ground system equipment and its application to the ICON FUV flight grating characterization and selection. Proc. SPIE 9912, 99124O (2016)

    Article  ADS  Google Scholar 

  • J. Champagne, Design and characterization of the CCD detector assemblies for ICON FUV, in AGU Fall Meeting (AGU, Washington, 2015)

    Google Scholar 

  • A.B. Christensen, L.J. Paxton, S. Avery et al., Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission. J. Geophys. Res. 108(A12), 1451 (2003). doi:10.1029/2003JA009918

    Article  Google Scholar 

  • A.B. Christensen, L.J. Paxton, S. Avery, J. Craven, G. Crowley, D.C. Humm, H. Kil, R.R. Meier, C.-I. Meng, D. Morrison, B.S. Ogorzalek, P. Straus, D.J. Strickland, R.M. Swenson, R.L. Walterscheid, B. Wolven, Y. Zhang, Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission. J. Geophys. Res. 108 (SIA 16-1), 1451 (2003). doi:10.1029/2003JA009918

    Article  Google Scholar 

  • J. Comberiate, F. Kamalabadi, L.J. Paxton, A tomographic model for ionospheric imaging with the Global Ultraviolet Imager. Radio Sci. 42(2), RS2011 (2007). doi:10.1029/2005RS003348

    Article  ADS  Google Scholar 

  • M. Czerny, A. Turner, Über den Astigmatismus bei Spiegelspektrometern. Z. Phys. A 61, 792–797 (1930)

    Article  MATH  Google Scholar 

  • M.L. Dalton, Astigmatism compensation in the Czerny–Turner spectrometer. Appl. Opt. 5, 1121–1123 (1966). doi:10.1364/AO.5.001121

    Article  ADS  Google Scholar 

  • L.A. Frank, J.D. Craven, Imaging results from dynamics explorer 1. Rev. Geophys. 2, 249 (1988)

    Article  ADS  Google Scholar 

  • L.A. Frank, J.D. Craven, K.L. Ackerson, M.R. English, R.H. Eather, R.L. Carovillano, Global auroral imaging instrumentation for the dynamics explorer mission. Space Sci. Instrum. 5, 369–393 (1981)

    ADS  Google Scholar 

  • W.B. Hanson, A comparison of the oxygen ion-ion neutralization and radiative recombination mechanisms for producing the ultraviolet nightglow. J. Geophys. Res. 75, 4343–4346 (1970). doi:10.1029/JA075i022p04343

    Article  ADS  Google Scholar 

  • G.T. Hicks, T.A. Chubb, Equatorial aurora/airglow in the far ultra-violet. J. Geophys. Res. 75, 6233–6248 (1970)

    Article  ADS  Google Scholar 

  • J.D. Huba, K.F. Dymond, G. Joyce, A.A. Budzien, S.E. Thonnard, J.A. Fedder, R.P. McCoy, Comparison of \(\mathrm{O}+\)demsity from ARGOSLORAAS data analysis and SAMI2 model results. Geophys. Res. Lett. 29 (2002). doi:10.1029/2001GL013089

  • T.J. Immel, S.L. England, S.B. Mende, R.A. Heelis, C.R. Englert, J. Edelstein, H.U. Frey, E.R. Taylor, W.W. Craig, S.E. Harris, M. Bester, G.S. Bust, G. Crowley, J.M. Forbes, J.-C. Gèrard, J.M. Harlander, J.D. Huba, B. Hubert, F. Kamalabadi, J.J. Makela, A.I. Maute, R.R. Meier, C. Raftery, P. Rochus, O.H.W. Siegmund, A.W. Stephan, G.R. Swenson, S. Frey, D.L. Hysell, A. Saito, K.A. Rider, M.M. Sirk, M.H. Stevens, The ionospheric connection explorer mission: mission goals and design. Space Sci. Rev. (2017)

  • T.J. Immel, E. Sagawa, S.L. England, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, L.J. Paxton, Control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. 33, L15108 (2006). doi:10.1029/2006GL026161

    Article  ADS  Google Scholar 

  • F. Kamalabadi, J.M. Comberiate, M.J. Taylor, P.-D. Pautet, Estimation of electron densities in the lower thermosphere from GUVI 135.6 nm tomographic inversions in support of SpreadFEx. Ann. Geophys. 27, 2439–2448 (2009). doi:10.5194/angeo-27-2439-2009

    Article  ADS  Google Scholar 

  • F. Kamalabadi, J. Qin, B. Harding, D. Iliou, J. Makela, R.R. Meier, S.L. England, H.U. Frey, S.B. Mende, T.J. Immel, Inferring nighttime ionospheric parameters with the far ultraviolet imager onboard the ionospheric connection explorer. Space Sci. Rev. (2017)

  • J. Loicq, C. Kintziger, A. Mazzoli, T. Miller, C. Chou, T. Immel, H. Frey, S. Mende, Optical design and optical properties of a VUV spectrographic imager for ICON mission. Proc. SPIE 9905, 990507 (2016a)

    Article  Google Scholar 

  • J. Loicq, P. Blain, R. Desselle, I. Domken, C. Kintziger, E. Renotte, Y. Stockman, C. Chou, H. Frey, K. Rider, S. Mende, VUV optical ground system equipment and its application to the ICON-FUV flight grating characterization and selection. Proc. SPIE 9912, 99124O (2016b)

    Article  Google Scholar 

  • J. Loicq, P. Blain, R. Desselle, I. Domken, C. Kintziger, E. Renotte, Y. Stockman, L. Clermont, C. Chou, C. Popette, H. Frey, K. Rider, S. Mende, Alignment and calibration of the ICON-FUV instrument: development of a vacuum UV facility. Proc. SPIE 9905, 99052W (2016c)

    Article  Google Scholar 

  • J.J. Makela, M.C. Kelley, A. González Sixto, N. Aponte, R.P. McCoy, Ionospheric topography maps using multiple-wavelength all-sky images. J. Geophys. Res. 106, 29161–29174 (2001). doi:10.1029/2000JA000449

    Article  ADS  Google Scholar 

  • L. Mandel, Image fluctuations in cascade intensifiers. Br. J. Appl. Phys. 10, 233–234 (1959)

    Article  ADS  Google Scholar 

  • R.R. Meier, D.E. Anderson, Determination of atmospheric composition and temperature from the UV airglow. Planet. Space Sci. 31, 967–976 (1983). doi:10.1016/0032-0633(83)90088-0

    Article  ADS  Google Scholar 

  • R.R. Meier, J.M. Picone, Retrieval of absolute thermospheric concentrations from the far UV dayglow: an application of discrete inverse theory. J. Geophys. Res. 99, 6307–6320 (1994). doi:10.1029/93JA02775

    Article  ADS  Google Scholar 

  • R.R. Meier et al., Remote sensing of Earth’s limb by TIMED/GUVI: retrieval of thermospheric composition and temperature. Earth Space Sci. 2, 1–37 (2015). doi:10.1002/2014EA000035

    Article  ADS  Google Scholar 

  • S.B. Mende, Observing the magnetosphere through global auroral imaging, 2. observing techniques. J. Geophys. Res. Space Phys. 121, 10,638–10,660 (2016). doi:10.1002/2016JA022607

    Article  Google Scholar 

  • S.B. Mende, H. Heetderks, H.U. Frey, M. Lampton, S.P. Geller, S. Habraken, E. Renotte, C. Jamar, P. Rochus, J. Spann, S.A. Fuselier, J.-C. Gerard, R. Gladstone, S. Murphree, L. Cogger, Far ultraviolet imaging from the IMAGE spacecraft, 1: system design. Space Sci. Rev. 91, 243–270 (2000a)

    Article  ADS  Google Scholar 

  • S.B. Mende, H. Heetderks, H.U. Frey, M. Lampton, S.P. Geller, R. Abiad, O.H.W. Siegmund, A.S. Tremsin, J. Spann, H. Dougani, S.A. Fuselier, A.L. Magoncelli, M.B. Bumala, S. Murphree, T. Trondsen, Far ultraviolet imaging from the IMAGE spacecraft, 2: wideband FUV imaging. Space Sci. Rev. 91, 271–285 (2000b)

    Article  ADS  Google Scholar 

  • S.B. Mende, H. Heetderks, H.U. Frey, J.M. Stock, M. Lampton, S.P. Geller, R. Abiad, O.H.W. Siegmund, S. Habraken, E. Renotte, C. Jamar, P. Rochus, J.-C. Gerard, R. Sigler, H. Lauche, Far ultraviolet imaging from the IMAGE spacecraft, 3: spectral imaging of Lyman\(-\alpha\) and OI 135.6 nm. Space Sci. Rev. 91, 287–318 (2000c)

    Article  ADS  Google Scholar 

  • J.S. Murphree, R.A. King, T. Payne, K. Smith, D. Reid, J. Adema, B. Gordon, R. Wlochowicz, The Freja ultraviolet imager. Space Sci. Rev. 70, 421–446 (1994)

    Article  ADS  Google Scholar 

  • J. Qin, F. Kamalabadi, J.J. Makela, Quantifying the inversion accuracy of simplified physical models for the nighttime OI 135.6 nm emission. J. Geophys. Res. Space Phys. 121, 5805–5814 (2016). doi:10.1002/2016JA022720

    Article  ADS  Google Scholar 

  • M.A. Quijada, S. Rice, E. Mentzell, Enhanced MgF2 and LiF over-coated al mirrors for FUV space astronomy, in Modern Technologies in Space- and Ground-Based Telescopes and Instrumentation II. Proc. SPIE, vol. 8450 (2012), p. article 84502H, pp10. doi:10.1117/12.925579

    Chapter  Google Scholar 

  • E. Sagawa, T. Maruyama, T.J. Immel, H.U. Frey, S.B. Mende, Global view of the nighttime low-latitude ionosphere by the IMAGE/FUV 135.6 nm observations. Geophys. Res. Lett. 30(10), 1534 (2003). doi:10.1029/2003GL017140

    Article  ADS  Google Scholar 

  • A.W. Stephan, R.R. Meier, S.L. England, H.U. Frey, S.B. Mende, T.J. Immel, Daytime O/N2 retrieval algorithm for the ionospheric connection explorer (ICON) (2017)

  • D.J. Strickland, J.S. Evans, L.J. Paxton, Satellite remote sensing of thermospheric O/N2 and solar EUV, 1: theory. J. Geophys. Res. 100, 12217–12226 (1995). doi:10.1029/95JA00574

    Article  ADS  Google Scholar 

  • M.R. Torr, D.G. Torr, M. Zukic, R.B. Johnson, J. Ajello, P. Banks, K. Clark, K. Cole, C. Keffer, G. Parks, B. Tsuratani, J. Spann, A far ultraviolet imager for the international solar-terrestrial physics mission. Space Sci. Rev. 71, 329 (1995)

    Article  ADS  Google Scholar 

  • C.W. Wilkins, S.B. Mende, H.U. Frey, S.L. England, Time-delay integration imaging with ICON’s far-ultraviolet spectrograph. Space Sci. Rev. (2017)

Download references

Acknowledgements

The authors acknowledge the contributions of many persons who made it possible for us to build the ICON FUV experiment. There are too many persons to be named individually at the various institutions which cooperated in producing the ICON FUV instrument at the University of California, Berkeley, at the Centre Spatiale de Liege in Belgium, at the Space Dynamics Laboratory in Logan Utah, and the Lockheed Advanced Technology Center in Palo Alto, at the Goddard Spaceflight Center in Greenbelt Maryland, at Orbital-ATK in Dulles, Virginia and at several other institutions. The authors gratefully acknowledge funding by the NASA’s Explorers Program under the Ionospheric CONnection Explorer (ICON) project contract number NNG12FA45C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Mende.

Additional information

The Ionospheric Connection Explorer (ICON) mission

Edited by Doug Rowland and Thomas J. Immel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mende, S.B., Frey, H.U., Rider, K. et al. The Far Ultra-Violet Imager on the Icon Mission. Space Sci Rev 212, 655–696 (2017). https://doi.org/10.1007/s11214-017-0386-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0386-0

Keywords

Navigation